Publications

ReproNim Publications

  1. Rorden, C., Béranger, B., Cheng, H., Clemence, M., Debacker, C., Fernandez, B., Halchenko, Y., Harms, M., Holla, B., Innis, I., Kuijer, J., Levitas, D., Litinas, K., Luci, J., Newman-Norlund, R., Peltier, S., Rehwald, W., Reid, R., Rogers, B., Schwarz, C., Shin, J., Ganesan, V., Ganji, S., Morgan, P. (2025). DICOM datasets for reproducible neuroimaging research across manufacturers and software versions. Scientific Data, 12(1). https://doi.org/10.1038/s41597-025-05503-w

  2. Chhetri, Tek Raj, Chen, Yibei, Trivedi, Puja, Jarecka, Dorota, Haobsh, Saif, Ray, Patrick, Ng, Lydia, Ghosh, Satrajit S. (2025). STRUCTSENSE: A Task-Agnostic Agentic Framework for Structured Information Extraction with Human-In-The-Loop Evaluation and Benchmarking. arXiv. https://doi.org/10.48550/arXiv.2507.03674

  3. Taylor, Paul A., Aggarwal, Himanshu, Bandettini, Peter, Barilari, Marco, Bright, Molly, Caballero-Gaudes, Cesar, Calhoun, Vince, Chakravarty, Mallar, Devenyi, Gabriel, Evans, Jennifer, Garza-Villarreal, Eduardo, Rasgado-Toledo, Jalil, Gau, Remi, Glen, Daniel, Goebel, Rainer, Gonzalez-Castillo, Javier, Gulban, Omer Faruk, Halchenko, Yaroslav, Handwerker, Daniel, Hanayik, Taylor, Lauren, Peter, Leopold, David, Lerch, Jason, Mathys, Christian, McCarthy, Paul, McLeod, Anke, Mejia, Amanda, Moia, Stefano, Nichols, Thomas, Pernet, Cyril, Pessoa, Luiz, Pfleiderer, Bettina, Rajendra, Justin, Reyes, Laura, Reynolds, Richard, Roopchansingh, Vinai, Rorden, Chris, Russ, Brian, Sundermann, Benedikt, Thirion, Bertrand, Torrisi, Salvatore, Chen, Gang (2025). Go Figure: Transparency in neuroscience images preserves context and clarifies interpretation. arXiv. https://doi.org/10.48550/arXiv.2504.07824

  4. Chen, Y., Jarecka, D., Abraham, S., Gau, R., Ng, E., Low, D., Bevers, I., Johnson, A., Keshavan, A., Klein, A., Clucas, J., Rosli, Z., Hodge, S., Linkersdörfer, J., Bartsch, H., Das, S., Fair, D., Kennedy, D., Ghosh, S. (2025). Standardizing Survey Data Collection to Enhance Reproducibility: Development and Comparative Evaluation of the ReproSchema Ecosystem. Journal of Medical Internet Research, 27(), e63343. https://doi.org/10.2196/63343

  5. Pedroza‐Sotelo, K., Schwarb, H., Auerbach, R., Ghosh, S., Henin, A., Hofmann, S., Pizzagalli, D., Yendiki, A., Whitfield‐Gabrieli, S., Gabrieli, J., Hubbard, N. (2025). Evidence of Disrupted Hippocampal Gray‐ and White‐Matter Development in Adolescent Anxiety Disorders, Independent From Early‐Life Stress. Hippocampus, 35(5). https://doi.org/10.1002/hipo.70028

  6. Szczepanik, M., Wagner, A., Heunis, S., Waite, L., Eickhoff, S., Hanke, M. (2024). Teaching Research Data Management with DataLad: A Multi-year, Multi-domain Effort. Neuroinformatics, 22(4), 635-645. https://doi.org/10.1007/s12021-024-09665-7

  7. Renton, A., Dao, T., Johnstone, T., Civier, O., Sullivan, R., White, D., Lyons, P., Slade, B., Abbott, D., Amos, T., Bollmann, S., Botting, A., Campbell, M., Chang, J., Close, T., Dörig, M., Eckstein, K., Egan, G., Evas, S., Flandin, G., Garner, K., Garrido, M., Ghosh, S., Grignard, M., Halchenko, Y., Hannan, A., Heinsfeld, A., Huber, L., Hughes, M., Kaczmarzyk, J., Kasper, L., Kuhlmann, L., Lou, K., Mantilla-Ramos, Y., Mattingley, J., Meier, M., Morris, J., Narayanan, A., Pestilli, F., Puce, A., Ribeiro, F., Rogasch, N., Rorden, C., Schira, M., Shaw, T., Sowman, P., Spitz, G., Stewart, A., Ye, X., Zhu, J., Narayanan, A., Bollmann, S. (2024). Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging. Nature Methods, 21(5), 804-808. https://doi.org/10.1038/s41592-023-02145-x

  8. Hubbard, N., Bauer, C., Siless, V., Auerbach, R., Elam, J., Frosch, I., Henin, A., Hofmann, S., Hodge, M., Jones, R., Lenzini, P., Lo, N., Park, A., Pizzagalli, D., Vaz-DeSouza, F., Gabrieli, J., Whitfield-Gabrieli, S., Yendiki, A., Ghosh, S. (2024). The Human Connectome Project of adolescent anxiety and depression dataset. Scientific Data, 11(1). https://doi.org/10.1038/s41597-024-03629-x

  9. Torabi, M., Mitsis, G., Poline, J. (2024). On the variability of dynamic functional connectivity assessment methods. GigaScience, 13(). https://doi.org/10.1093/gigascience/giae009

  10. Burdinski, D., Kodibagkar, A., Potter, K., Schuster, R., Evins, A., Ghosh, S., Gilman, J. (2024). Impact of year-long cannabis use for medical symptoms on brain activation during cognitive processes. Journal unknown. https://doi.org/10.1101/2024.04.29.24306516

  11. Poldrack, R., Markiewicz, C., Appelhoff, S., Ashar, Y., Auer, T., Baillet, S., Bansal, S., Beltrachini, L., Benar, C., Bertazzoli, G., Bhogawar, S., Blair, R., Bortoletto, M., Boudreau, M., Brooks, T., Calhoun, V., Castelli, F., Clement, P., Cohen, A., Cohen-Adad, J., D’Ambrosio, S., de Hollander, G., de la Iglesia-Vayá, M., de la Vega, A., Delorme, A., Devinsky, O., Draschkow, D., Duff, E., DuPre, E., Earl, E., Esteban, O., Feingold, F., Flandin, G., Galassi, A., Gallitto, G., Ganz, M., Gau, R., Gholam, J., Ghosh, S., Giacomel, A., Gillman, A., Gleeson, P., Gramfort, A., Guay, S., Guidali, G., Halchenko, Y., Handwerker, D., Hardcastle, N., Herholz, P., Hermes, D., Honey, C., Innis, R., Ioanas, H., Jahn, A., Karakuzu, A., Keator, D., Kiar, G., Kincses, B., Laird, A., Lau, J., Lazari, A., Legarreta, J., Li, A., Li, X., Love, B., Lu, H., Marcantoni, E., Maumet, C., Mazzamuto, G., Meisler, S., Mikkelsen, M., Mutsaerts, H., Nichols, T., Nikolaidis, A., Nilsonne, G., Niso, G., Norgaard, M., Okell, T., Oostenveld, R., Ort, E., Park, P., Pawlik, M., Pernet, C., Pestilli, F., Petr, J., Phillips, C., Poline, J., Pollonini, L., Raamana, P., Ritter, P., Rizzo, G., Robbins, K., Rockhill, A., Rogers, C., Rokem, A., Rorden, C., Routier, A., Saborit-Torres, J., Salo, T., Schirner, M., Smith, R., Spisak, T., Sprenger, J., Swann, N., Szinte, M., Takerkart, S., Thirion, B., Thomas, A., Torabian, S., Varoquaux, G., Voytek, B., Welzel, J., Wilson, M., Yarkoni, T., Gorgolewski, K. (2024). The past, present, and future of the brain imaging data structure (BIDS). Imaging Neuroscience, 2(), 1-19. https://doi.org/10.1162/imag_a_00103

  12. Kliemann, D., Galdi, P., Van De Water, A., Egger, B., Jarecka, D., Adolphs, R., Ghosh, S. (2024). Resting-State Functional Connectivity of the Amygdala in Autism: A Preregistered Large-Scale Study. American Journal of Psychiatry, 181(12), 1076-1085. https://doi.org/10.1176/appi.ajp.20230249

  13. Lin, D., Backus, D., Chakraborty, S., Liew, S., Valero-Cuevas, F., Patten, C., Cotton, R. (2024). Transforming modeling in neurorehabilitation: clinical insights for personalized rehabilitation. Journal of NeuroEngineering and Rehabilitation, 21(1). https://doi.org/10.1186/s12984-024-01309-w

  14. Low, D., Rao, V., Randolph, G., Song, P., Ghosh, S. (2024). Identifying bias in models that detect vocal fold paralysis from audio recordings using explainable machine learning and clinician ratings. PLOS Digital Health, 3(5), e0000516. https://doi.org/10.1371/journal.pdig.0000516

  15. Sokołowski, A., Bhagwat, N., Chatelain, Y., Dugré, M., Hanganu, A., Monchi, O., McPherson, B., Wang, M., Poline, J., Sharp, M., Glatard, T. (2024). Longitudinal brain structure changes in Parkinson’s disease: A replication study. PLOS ONE, 19(1), e0295069. https://doi.org/10.1371/journal.pone.0295069

  16. Halchenko, Y., Goncalves, M., Ghosh, S., Velasco, P., Visconti di Oleggio Castello, M., Salo, T., Wodder, J., Hanke, M., Sadil, P., Gorgolewski, K., Ioanas, H., Rorden, C., Hendrickson, T., Dayan, M., Houlihan, S., Kent, J., Strauss, T., Lee, J., To, I., Markiewicz, C., Lukas, D., Butler, E., Thompson, T., Termenon, M., Smith, D., Macdonald, A., Kennedy, D. (2024). HeuDiConv — flexible DICOM conversion into structured directory layouts. Journal of Open Source Software, 9(99), 5839. https://doi.org/10.21105/joss.05839

  17. Ioanas, H., Macdonald, A., Halchenko, Y. (2024). Neuroimaging article reexecution and reproduction assessment system. Frontiers in Neuroinformatics, 18(). https://doi.org/10.3389/fninf.2024.1376022

  18. Plis, S., Masoud, M., Hu, F., Hanayik, T., Ghosh, S., Drake, C., Newman-Norlund, R., Rorden, C. (2024). Brainchop: Providing an Edge Ecosystem for Deployment of Neuroimaging Artificial Intelligence Models. Aperture Neuro, 4(). https://doi.org/10.52294/001c.123059

  19. Larivière, S., Bayrak, Ş., Vos de Wael, R., Benkarim, O., Herholz, P., Rodriguez-Cruces, R., Paquola, C., Hong, S., Misic, B., Evans, A., Valk, S., Bernhardt, B. (2023). BrainStat: A toolbox for brain-wide statistics and multimodal feature associations. NeuroImage, 266(), 119807. https://doi.org/10.1016/j.neuroimage.2022.119807

  20. Kiar, G., Clucas, J., Feczko, E., Goncalves, M., Jarecka, D., Markiewicz, C., Halchenko, Y., Hermosillo, R., Li, X., Miranda-Dominguez, O., Ghosh, S., Poldrack, R., Satterthwaite, T., Milham, M., Fair, D. (2023). Align with the NMIND consortium for better neuroimaging. Nature Human Behaviour, 7(7), 1027-1028. https://doi.org/10.1038/s41562-023-01647-0

  21. Poline, J., Das, S., Glatard, T., Madjar, C., Dickie, E., Lecours, X., Beaudry, T., Beck, N., Behan, B., Brown, S., Bujold, D., Beauvais, M., Caron, B., Czech, C., Dharsee, M., Dugré, M., Evans, K., Gee, T., Ippoliti, G., Kiar, G., Knoppers, B., Kuehn, T., Le, D., Lo, D., Mazaheri, M., MacFarlane, D., Muja, N., O’Brien, E., O’Callaghan, L., Paiva, S., Park, P., Quesnel, D., Rabelais, H., Rioux, P., Legault, M., Tremblay-Mercier, J., Rotenberg, D., Stone, J., Strauss, T., Zaytseva, K., Zhou, J., Duchesne, S., Khan, A., Hill, S., Evans, A. (2023). Data and Tools Integration in the Canadian Open Neuroscience Platform. Scientific Data, 10(1). https://doi.org/10.1038/s41597-023-01946-1

  22. Wang, Q., Aljassar, M., Bhagwat, N., Zeighami, Y., Evans, A., Dagher, A., Pike, G., Sadikot, A., Poline, J. (2023). Reproducibility of cerebellar involvement as quantified by consensus structural MRI biomarkers in advanced essential tremor. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-022-25306-y

  23. Peraza, J., Salo, T., Riedel, M., Bottenhorn, K., Poline, J., Dockès, J., Kent, J., Bartley, J., Flannery, J., Hill-Bowen, L., Lobo, R., Poudel, R., Ray, K., Robinson, J., Laird, R., Sutherland, M., de la Vega, A., Laird, A. (2023). Methods for decoding cortical gradients of functional connectivity. Journal unknown. https://doi.org/10.1101/2023.08.01.551505

  24. Zhao, C., Jarecka, D., Covitz, S., Chen, Y., Eickhoff, S., Fair, D., Franco, A., Halchenko, Y., Hendrickson, T., Hoffstaedter, F., Houghton, A., Kiar, G., Macdonald, A., Mehta, K., Milham, M., Salo, T., Hanke, M., Ghosh, S., Cieslak, M., Satterthwaite, T. (2023). A reproducible and generalizable software workflow for analysis of large-scale neuroimaging data collections using BIDS Apps. Journal unknown. https://doi.org/10.1101/2023.08.16.552472

  25. Makris, N., Rushmore, R., Kaiser, J., Albaugh, M., Kubicki, M., Rathi, Y., Zhang, F., O’Donnell, L., Yeterian, E., Caviness, V., Kennedy, D. (2023). A Proposed Human Structural Brain Connectivity Matrix in the Center for Morphometric Analysis Harvard-Oxford Atlas Framework: A Historical Perspective and Future Direction for Enhancing the Precision of Human Structural Connectivity with a Novel Neuroanatomical Typology. Developmental Neuroscience, 45(4), 161-180. https://doi.org/10.1159/000530358

  26. Bollmann, S., Renton, A., Dao, T., Johnstone, T., Civier, O., Sullivan, R., White, D., Lyons, P., Slade, B., Abbott, D., Amos, T., Bollmann, S., Botting, A., Campbell, M., Chang, J., Close, T., Eckstein, K., Egan, G., Evas, S., Flandin, G., Garner, K., Garrido, M., Ghosh, S., Grignard, M., Hannan, A., Huber, L., Kaczmarzyk, J., Kasper, L., Kuhlmann, L., Lou, K., Mantilla-Ramos, Y., Mattingley, J., Morris, J., Narayanan, A., Pestilli, F., Puce, A., Ribeiro, F., Rogasch, N., Rorden, C., Schira, M., Shaw, T., Sowman, P., Spitz, G., Stewart, A., Ye, X., Zhu, J., Hughes, M., Narayanan, A. (2023). Neurodesk: An accessible, flexible, and portable data analysis environment for reproducible neuroimaging. Journal unknown. https://doi.org/10.21203/rs.3.rs-2649734/v1

  27. Modarres, M., Cochran, D., Kennedy, D., Frazier, J. (2023). Comparison of comprehensive quantitative EEG metrics between typically developing boys and girls in resting state eyes-open and eyes-closed conditions. Frontiers in Human Neuroscience, 17(). https://doi.org/10.3389/fnhum.2023.1237651

  28. Lo, B., Donnelly, M., Barisano, G., Liew, S. (2023). A standardized protocol for manually segmenting stroke lesions on high-resolution T1-weighted MR images. Frontiers in Neuroimaging, 1(). https://doi.org/10.3389/fnimg.2022.1098604

  29. Ferris, J., Lo, B., Khlif, M., Brodtmann, A., Boyd, L., Liew, S. (2023). Optimizing automated white matter hyperintensity segmentation in individuals with stroke. Frontiers in Neuroimaging, 2(). https://doi.org/10.3389/fnimg.2023.1099301

  30. Queder, N., Tien, V., Abraham, S., Urchs, S., Helmer, K., Chaplin, D., van Erp, T., Kennedy, D., Poline, J., Grethe, J., Ghosh, S., Keator, D. (2023). NIDM-Terms: community-based terminology management for improved neuroimaging dataset descriptions and query. Frontiers in Neuroinformatics, 17(). https://doi.org/10.3389/fninf.2023.1174156

  31. Torabian, S., Vélez, N., Sochat, V., Halchenko, Y., Grossman, E. (2023). The PyMVPA BIDS-App: a robust multivariate pattern analysis pipeline for fMRI data. Frontiers in Neuroscience, 17(). https://doi.org/10.3389/fnins.2023.1233416

  32. Schabdach, J., Schmitt, J., Sotardi, S., Vossough, A., Andronikou, S., Roberts, T., Huang, H., Padmanabhan, V., Ortiz-Rosa, A., Gardner, M., Covitz, S., Bedford, S., Mandal, A., Chaiyachati, B., White, S., Bullmore, E., Bethlehem, R., Shinohara, R., Billot, B., Iglesias, J., Ghosh, S., Gur, R., Satterthwaite, T., Roalf, D., Seidlitz, J., Alexander-Bloch, A. (2023). Brain Growth Charts for Quantitative Analysis of Pediatric Clinical Brain MRI Scans with Limited Imaging Pathology. Radiology, 309(1). https://doi.org/10.1148/radiol.230096

  33. Notter, M., Herholz, P., Da Costa, S., Gulban, O., Isik, A., Gaglianese, A., Murray, M. (2022). fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines. Brain Topography, 36(2), 172-191. https://doi.org/10.1007/s10548-022-00935-8

  34. Poline, J., Kennedy, D., Sommer, F., Ascoli, G., Van Essen, D., Ferguson, A., Grethe, J., Hawrylycz, M., Thompson, P., Poldrack, R., Ghosh, S., Keator, D., Athey, T., Vogelstein, J., Mayberg, H., Martone, M. (2022). Is Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data. Neuroinformatics, 20(2), 507-512. https://doi.org/10.1007/s12021-021-09557-0

  35. Cruces, R., Royer, J., Herholz, P., Larivière, S., Vos de Wael, R., Paquola, C., Benkarim, O., Park, B., Degré-Pelletier, J., Nelson, M., DeKraker, J., Leppert, I., Tardif, C., Poline, J., Concha, L., Bernhardt, B. (2022). Micapipe: A pipeline for multimodal neuroimaging and connectome analysis. NeuroImage, 263(), 119612. https://doi.org/10.1016/j.neuroimage.2022.119612

  36. Niso, G., Botvinik-Nezer, R., Appelhoff, S., De La Vega, A., Esteban, O., Etzel, J., Finc, K., Ganz, M., Gau, R., Halchenko, Y., Herholz, P., Karakuzu, A., Keator, D., Markiewicz, C., Maumet, C., Pernet, C., Pestilli, F., Queder, N., Schmitt, T., Sójka, W., Wagner, A., Whitaker, K., Rieger, J. (2022). Open and reproducible neuroimaging: From study inception to publication. NeuroImage, 263(), 119623. https://doi.org/10.1016/j.neuroimage.2022.119623

  37. Eke, D., Bernard, A., Bjaalie, J., Chavarriaga, R., Hanakawa, T., Hannan, A., Hill, S., Martone, M., McMahon, A., Ruebel, O., Crook, S., Thiels, E., Pestilli, F. (2022). International data governance for neuroscience. Neuron, 110(4), 600-612. https://doi.org/10.1016/j.neuron.2021.11.017

  38. Manelis, A., Halchenko, Y., Bonar, L., Stiffler, R., Satz, S., Miceli, R., Ladouceur, C., Bebko, G., Iyengar, S., Swartz, H., Phillips, M. (2022). Working memory updating in individuals with bipolar and unipolar depression: fMRI study. Translational Psychiatry, 12(1). https://doi.org/10.1038/s41398-022-02211-6

  39. Ciric, R., Thompson, W., Lorenz, R., Goncalves, M., MacNicol, E., Markiewicz, C., Halchenko, Y., Ghosh, S., Gorgolewski, K., Poldrack, R., Esteban, O. (2022). TemplateFlow: FAIR-sharing of multi-scale, multi-species brain models. Nature Methods, 19(12), 1568-1571. https://doi.org/10.1038/s41592-022-01681-2

  40. Royer, J., Rodríguez-Cruces, R., Tavakol, S., Larivière, S., Herholz, P., Li, Q., Vos de Wael, R., Paquola, C., Benkarim, O., Park, B., Lowe, A., Margulies, D., Smallwood, J., Bernasconi, A., Bernasconi, N., Frauscher, B., Bernhardt, B. (2022). An Open MRI Dataset For Multiscale Neuroscience. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01682-y

  41. Boaro, A., Kaczmarzyk, J., Kavouridis, V., Harary, M., Mammi, M., Dawood, H., Shea, A., Cho, E., Juvekar, P., Noh, T., Rana, A., Ghosh, S., Arnaout, O. (2022). Deep neural networks allow expert-level brain meningioma segmentation and present potential for improvement of clinical practice. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-19356-5

  42. Perez-Lebel, A., Varoquaux, G., Le Morvan, M., Josse, J., Poline, J. (2022). Benchmarking missing-values approaches for predictive models on health databases. GigaScience, 11(). https://doi.org/10.1093/gigascience/giac013

  43. McNaughton, R., Pieper, C., Sakai, O., Rollins, J., Zhang, X., Kennedy, D., Frazier, J., Douglass, L., Heeren, T., Fry, R., O’Shea, T., Kuban, K., Jara, H., Rollins, J., Shah, B., Singh, R., Vaidya, R., Van Marter, L., Martin, C., Ware, J., Rollins, C., Cole, C., Perrin, E., Sakai, C., Bednarek, F., Frazier, J., Ehrenkranz, R., Benjamin, J., Montgomery, A., O’Shea, T., Washburn, L., Gogcu, S., Bose, C., Warner, D., O’Shea, T., Engelke, S., Higginson, A., Higginson, J., Bear, K., Poortenga, M., Pastyrnak, S., Karna, P., Paneth, N., Lenski, M., Schreiber, M., Hunter, S., Msall, M., Batton, D., Klarr, J., Lee, Y., Obeid, R., Christianson, K., Klein, D., Wagner, K., Pimental, M., Hallisey, C., Coster, T., Dolins, M., Mittleman, M., Haile, H., Rohde, J., Nylen, E., Neger, E., Mattern, K., Ma, C., Toner, D., Vitaro, E., Venuti, L., Powers, B., Foley, A., Sacco, T., Williams, J., Romano, E., Henry, C., Hiatt, D., Peters, N., Brown, P., Ansusinha, E., Smith, J., Yang, N., Bose, G., Wereszczak, J., Bernhardt, J., Adams, J., Wilson, D., Darden-Saad, N., Williams, B., Jones, E., Sutton, D., Rathbun, J., Fagerman, S., Boshoven, W., Johnson, J., James, B., Miras, K., Solomon, C., Weiland, D., Yoon, G., Ramoskaite, R., Wiggins, S., Washington, K., Martin, R., Prendergast, B., Lynch, E., Kring, B., Smith, A., McQuiston, S., Butler, S., Wilson, R., McGhee, K., Lee, P., Asgarian, A., Sadhwani, A., Henson, B., Keller, C., Walkowiak, J., Barron, S., Miller, A., Dessureau, B., Wood, M., Damon-Minow, J., Romano, E., Mayes, L., Tsatsanis, K., Chawarska, K., Kim, S., Dieterich, S., Bearrs, K., Waldrep, E., Friedman, J., Hounshell, G., Allred, D., Helms, R., Whitley, L., Stainback, G., Bostic, L., Jacobson, A., McKeeman, J., Meyer, E., Price, J., Lloyd, M., Plesha-Troyke, S., Scott, M., Solomon, K., Brooklier, K., Vogt, K. (2022). Quantitative MRI Characterization of the Extremely Preterm Brain at Adolescence: Atypical versus Neurotypical Developmental Pathways. Radiology, 304(2), 419-428. https://doi.org/10.1148/radiol.210385

  44. Kumar, A., Crowley, A., Queder, N., Poline, J., Ghosh, S., Kennedy, D., Grethe, J., Helmer, K., Keator, D. (2022). The Neuroimaging Data Model Linear Regression Tool (nidm_linreg): PyNIDM Project. F1000Research, 11(), 228. https://doi.org/10.12688/f1000research.108008.2

  45. DuPre, E., Holdgraf, C., Karakuzu, A., Tetrel, L., Bellec, P., Stikov, N., Poline, J. (2022). Beyond advertising: New infrastructures for publishing integrated research objects. PLOS Computational Biology, 18(1), e1009651. https://doi.org/10.1371/journal.pcbi.1009651

  46. Satz, S., Halchenko, Y., Ragozzino, R., Lucero, M., Phillips, M., Swartz, H., Manelis, A. (2022). The Relationship Between Default Mode and Dorsal Attention Networks Is Associated With Depressive Disorder Diagnosis and the Strength of Memory Representations Acquired Prior to the Resting State Scan. Frontiers in Human Neuroscience, 16(). https://doi.org/10.3389/fnhum.2022.749767

  47. de la Vega, A., Rocca, R., Blair, R., Markiewicz, C., Mentch, J., Kent, J., Herholz, P., Ghosh, S., Poldrack, R., Yarkoni, T. (2022). Neuroscout, a unified platform for generalizable and reproducible fMRI research. eLife, 11(). https://doi.org/10.7554/eLife.79277

  48. Bannier, E., Barker, G., Borghesani, V., Broeckx, N., Clement, P., Emblem, K., Ghosh, S., Glerean, E., Gorgolewski, K., Havu, M., Halchenko, Y., Herholz, P., Hespel, A., Heunis, S., Hu, Y., Hu, C., Huijser, D., de la Iglesia Vayá, M., Jancalek, R., Katsaros, V., Kieseler, M., Maumet, C., Moreau, C., Mutsaerts, H., Oostenveld, R., Ozturk‐Isik, E., Pascual Leone Espinosa, N., Pellman, J., Pernet, C., Pizzini, F., Trbalić, A., Toussaint, P., Visconti di Oleggio Castello, M., Wang, F., Wang, C., Zhu, H. (2021). The Open Brain Consent: Informing research participants and obtaining consent to share brain imaging data. Human Brain Mapping, 42(7), 1945-1951. https://doi.org/10.1002/hbm.25351

  49. Abrams, M., Bjaalie, J., Das, S., Egan, G., Ghosh, S., Goscinski, W., Grethe, J., Kotaleski, J., Ho, E., Kennedy, D., Lanyon, L., Leergaard, T., Mayberg, H., Milanesi, L., Mouček, R., Poline, J., Roy, P., Strother, S., Tang, T., Tiesinga, P., Wachtler, T., Wójcik, D., Martone, M. (2021). A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility. Neuroinformatics, 20(1), 25-36. https://doi.org/10.1007/s12021-020-09509-0

  50. Modarres, M., Cochran, D., Kennedy, D., Schmidt, R., Fitzpatrick, P., Frazier, J. (2021). Biomarkers Based on Comprehensive Hierarchical EEG Coherence Analysis: Example Application to Social Competence in Autism (Preliminary Results). Neuroinformatics, 20(1), 53-62. https://doi.org/10.1007/s12021-021-09517-8

  51. Abrams, M., Bjaalie, J., Das, S., Egan, G., Ghosh, S., Goscinski, W., Grethe, J., Kotaleski, J., Ho, E., Kennedy, D., Lanyon, L., Leergaard, T., Mayberg, H., Milanesi, L., Mouček, R., Poline, J., Roy, P., Strother, S., Tang, T., Tiesinga, P., Wachtler, T., Wójcik, D., Martone, M. (2021). Correction to: A Standards Organization for Open and FAIR Neuroscience: the International Neuroinformatics Coordinating Facility. Neuroinformatics, 20(1), 37-38. https://doi.org/10.1007/s12021-021-09522-x

  52. Torres-Espín, A., Almeida, C., Chou, A., Huie, J., Chiu, M., Vavrek, R., Sacramento, J., Orr, M., Gensel, J., Grethe, J., Martone, M., Fouad, K., Ferguson, A., Alilain, W., Bacon, M., Batty, N., Beattie, M., Bresnahan, J., Burnside, E., Busch, S., Carpenter, R., Quijorna, I., Guo, X., Haggerty, A., Haroon, S., Harris, J., Jakeman, L., Jones, L., Kleitman, N., Kopper, T., Lane, M., Magana, F., Magnuson, D., Maldonado, I., May, V., McFarlane, K., Morioka, K., Oudega, M., Pascual, P., Poline, J., Rosenzweig, E., Schmidt, E., Tetzlaff, W., Zholudeva, L. (2021). Promoting FAIR Data Through Community-driven Agile Design: the Open Data Commons for Spinal Cord Injury (odc-sci.org). Neuroinformatics, 20(1), 203-219. https://doi.org/10.1007/s12021-021-09533-8

  53. Baranger, D., Halchenko, Y., Satz, S., Ragozzino, R., Iyengar, S., Swartz, H., Manelis, A. (2021). Protocol for a machine learning algorithm predicting depressive disorders using the T1w/T2w ratio. MethodsX, 8(), 101595. https://doi.org/10.1016/j.mex.2021.101595

  54. Bazeille, T., DuPre, E., Richard, H., Poline, J., Thirion, B. (2021). An empirical evaluation of functional alignment using inter-subject decoding. NeuroImage, 245(), 118683. https://doi.org/10.1016/j.neuroimage.2021.118683

  55. Gau, R., Noble, S., Heuer, K., Bottenhorn, K., Bilgin, I., Yang, Y., Huntenburg, J., Bayer, J., Bethlehem, R., Rhoads, S., Vogelbacher, C., Borghesani, V., Levitis, E., Wang, H., Van Den Bossche, S., Kobeleva, X., Legarreta, J., Guay, S., Atay, S., Varoquaux, G., Huijser, D., Sandström, M., Herholz, P., Nastase, S., Badhwar, A., Dumas, G., Schwab, S., Moia, S., Dayan, M., Bassil, Y., Brooks, P., Mancini, M., Shine, J., O’Connor, D., Xie, X., Poggiali, D., Friedrich, P., Heinsfeld, A., Riedl, L., Toro, R., Caballero-Gaudes, C., Eklund, A., Garner, K., Nolan, C., Demeter, D., Barrios, F., Merchant, J., McDevitt, E., Oostenveld, R., Craddock, R., Rokem, A., Doyle, A., Ghosh, S., Nikolaidis, A., Stanley, O., Uruñuela, E., Anousheh, N., Arnatkeviciute, A., Auzias, G., Bachar, D., Bannier, E., Basanisi, R., Basavaraj, A., Bedini, M., Bellec, P., Benn, R., Berluti, K., Bollmann, S., Bollmann, S., Bradley, C., Brown, J., Buchweitz, A., Callahan, P., Chan, M., Chandio, B., Cheng, T., Chopra, S., Chung, A., Close, T., Combrisson, E., Cona, G., Constable, R., Cury, C., Dadi, K., Damasceno, P., Das, S., De Vico Fallani, F., DeStasio, K., Dickie, E., Dorfschmidt, L., Duff, E., DuPre, E., Dziura, S., Esper, N., Esteban, O., Fadnavis, S., Flandin, G., Flannery, J., Flournoy, J., Forkel, S., Franco, A., Ganesan, S., Gao, S., García Alanis, J., Garyfallidis, E., Glatard, T., Glerean, E., Gonzalez-Castillo, J., Gould van Praag, C., Greene, A., Gupta, G., Hahn, C., Halchenko, Y., Handwerker, D., Hartmann, T., Hayot-Sasson, V., Heunis, S., Hoffstaedter, F., Hohmann, D., Horien, C., Ioanas, H., Iordan, A., Jiang, C., Joseph, M., Kai, J., Karakuzu, A., Kennedy, D., Keshavan, A., Khan, A., Kiar, G., Klink, P., Koppelmans, V., Koudoro, S., Laird, A., Langs, G., Laws, M., Licandro, R., Liew, S., Lipic, T., Litinas, K., Lurie, D., Lussier, D., Madan, C., Mais, L., Mansour L, S., Manzano-Patron, J., Maoutsa, D., Marcon, M., Margulies, D., Marinato, G., Marinazzo, D., Markiewicz, C., Maumet, C., Meneguzzi, F., Meunier, D., Milham, M., Mills, K., Momi, D., Moreau, C., Motala, A., Moxon-Emre, I., Nichols, T., Nielson, D., Nilsonne, G., Novello, L., O’Brien, C., Olafson, E., Oliver, L., Onofrey, J., Orchard, E., Oudyk, K., Park, P., Parsapoor, M., Pasquini, L., Peltier, S., Pernet, C., Pienaar, R., Pinheiro-Chagas, P., Poline, J., Qiu, A., Quendera, T., Rice, L., Rocha-Hidalgo, J., Rutherford, S., Scharinger, M., Scheinost, D., Shariq, D., Shaw, T., Siless, V., Simmonite, M., Sirmpilatze, N., Spence, H., Sprenger, J., Stajduhar, A., Szinte, M., Takerkart, S., Tam, A., Tejavibulya, L., Thiebaut de Schotten, M., Thome, I., Tomaz da Silva, L., Traut, N., Uddin, L., Vallesi, A., VanMeter, J., Vijayakumar, N., di Oleggio Castello, M., Vohryzek, J., Vukojević, J., Whitaker, K., Whitmore, L., Wideman, S., Witt, S., Xie, H., Xu, T., Yan, C., Yeh, F., Yeo, B., Zuo, X. (2021). Brainhack: Developing a culture of open, inclusive, community-driven neuroscience. Neuron, 109(11), 1769-1775. https://doi.org/10.1016/j.neuron.2021.04.001

  56. Baranger, D., Halchenko, Y., Satz, S., Ragozzino, R., Iyengar, S., Swartz, H., Manelis, A. (2021). Aberrant levels of cortical myelin distinguish individuals with depressive disorders from healthy controls. NeuroImage: Clinical, 32(), 102790. https://doi.org/10.1016/j.nicl.2021.102790

  57. Nastase, S., Liu, Y., Hillman, H., Zadbood, A., Hasenfratz, L., Keshavarzian, N., Chen, J., Honey, C., Yeshurun, Y., Regev, M., Nguyen, M., Chang, C., Baldassano, C., Lositsky, O., Simony, E., Chow, M., Leong, Y., Brooks, P., Micciche, E., Choe, G., Goldstein, A., Vanderwal, T., Halchenko, Y., Norman, K., Hasson, U. (2021). The “Narratives” fMRI dataset for evaluating models of naturalistic language comprehension. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-01033-3

  58. Manelis, A., Soehner, A., Halchenko, Y., Satz, S., Ragozzino, R., Lucero, M., Swartz, H., Phillips, M., Versace, A. (2021). White matter abnormalities in adults with bipolar disorder type-II and unipolar depression. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-87069-2

  59. McAvoy, M., Prieto, P., Kaczmarzyk, J., Fernández, I., McNulty, J., Smith, T., Yu, K., Gormley, W., Arnaout, O. (2021). Classification of glioblastoma versus primary central nervous system lymphoma using convolutional neural networks. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-94733-0

  60. Bhagwat, N., Barry, A., Dickie, E., Brown, S., Devenyi, G., Hatano, K., DuPre, E., Dagher, A., Chakravarty, M., Greenwood, C., Misic, B., Kennedy, D., Poline, J. (2021). Understanding the impact of preprocessing pipelines on neuroimaging cortical surface analyses. GigaScience, 10(1). https://doi.org/10.1093/gigascience/giaa155

  61. Dockès, J., Varoquaux, G., Poline, J. (2021). Preventing dataset shift from breaking machine-learning biomarkers. GigaScience, 10(9). https://doi.org/10.1093/gigascience/giab055

  62. Hodge, S., Haselgrove, C., Honor, L., Kennedy, D., Frazier, J. (2021). An assessment of the autism neuroimaging literature for the prospects of re-executability. F1000Research, 9(), 1031. https://doi.org/10.12688/f1000research.25306.2

  63. Hanke, M., Pestilli, F., Wagner, A., Markiewicz, C., Poline, J., Halchenko, Y. (2021). In defense of decentralized research data management. Neuroforum, 0(0). https://doi.org/10.1515/nf-2020-0037

  64. Halchenko, Y., Meyer, K., Poldrack, B., Solanky, D., Wagner, A., Gors, J., MacFarlane, D., Pustina, D., Sochat, V., Ghosh, S., Mönch, C., Markiewicz, C., Waite, L., Shlyakhter, I., de la Vega, A., Hayashi, S., Häusler, C., Poline, J., Kadelka, T., Skytén, K., Jarecka, D., Kennedy, D., Strauss, T., Cieslak, M., Vavra, P., Ioanas, H., Schneider, R., Pflüger, M., Haxby, J., Eickhoff, S., Hanke, M. (2021). DataLad: distributed system for joint management of code, data, and their relationship. Journal of Open Source Software, 6(63), 3262. https://doi.org/10.21105/joss.03262

  65. Klein, A., Clucas, J., Krishnakumar, A., Ghosh, S., Van Auken, W., Thonet, B., Sabram, I., Acuna, N., Keshavan, A., Rossiter, H., Xiao, Y., Semenuta, S., Badioli, A., Konishcheva, K., Abraham, S., Alexander, L., Merikangas, K., Swendsen, J., Lindner, A., Milham, M. (2021). Remote Digital Psychiatry for Mobile Mental Health Assessment and Therapy: MindLogger Platform Development Study. Journal of Medical Internet Research, 23(11), e22369. https://doi.org/10.2196/22369

  66. Markiewicz, C., Gorgolewski, K., Feingold, F., Blair, R., Halchenko, Y., Miller, E., Hardcastle, N., Wexler, J., Esteban, O., Goncavles, M., Jwa, A., Poldrack, R. (2021). The OpenNeuro resource for sharing of neuroscience data. eLife, 10(). https://doi.org/10.7554/eLife.71774

  67. Markello, R., Arnatkeviciute, A., Poline, J., Fulcher, B., Fornito, A., Misic, B. (2021). Standardizing workflows in imaging transcriptomics with the abagen toolbox. eLife, 10(). https://doi.org/10.7554/eLife.72129

  68. Low, D., Bentley, K., Ghosh, S. (2020). Automated assessment of psychiatric disorders using speech: A systematic review. Laryngoscope Investigative Otolaryngology, 5(1), 96-116. https://doi.org/10.1002/lio2.354

  69. DuPre, E., Hanke, M., Poline, J. (2020). Nature abhors a paywall: How open science can realize the potential of naturalistic stimuli. NeuroImage, 216(), 116330. https://doi.org/10.1016/j.neuroimage.2019.116330

  70. Hubbard, N., Siless, V., Frosch, I., Goncalves, M., Lo, N., Wang, J., Bauer, C., Conroy, K., Cosby, E., Hay, A., Jones, R., Pinaire, M., Vaz De Souza, F., Vergara, G., Ghosh, S., Henin, A., Hirshfeld-Becker, D., Hofmann, S., Rosso, I., Auerbach, R., Pizzagalli, D., Yendiki, A., Gabrieli, J., Whitfield-Gabrieli, S. (2020). Brain function and clinical characterization in the Boston adolescent neuroimaging of depression and anxiety study. NeuroImage: Clinical, 27(), 102240. https://doi.org/10.1016/j.nicl.2020.102240

  71. Siless, V., Hubbard, N., Jones, R., Wang, J., Lo, N., Bauer, C., Goncalves, M., Frosch, I., Norton, D., Vergara, G., Conroy, K., De Souza, F., Rosso, I., Wickham, A., Cosby, E., Pinaire, M., Hirshfeld-Becker, D., Pizzagalli, D., Henin, A., Hofmann, S., Auerbach, R., Ghosh, S., Gabrieli, J., Whitfield-Gabrieli, S., Yendiki, A. (2020). Image acquisition and quality assurance in the Boston Adolescent Neuroimaging of Depression and Anxiety study. NeuroImage: Clinical, 26(), 102242. https://doi.org/10.1016/j.nicl.2020.102242

  72. Hung, Y., Uchida, M., Gaillard, S., Woodworth, H., Kelberman, C., Capella, J., Kadlec, K., Goncalves, M., Ghosh, S., Yendiki, A., Chai, X., Hirshfeld-Becker, D., Whitfield-Gabrieli, S., Gabrieli, J., Biederman, J. (2020). Cingulum-Callosal white-matter microstructure associated with emotional dysregulation in children: A diffusion tensor imaging study. NeuroImage: Clinical, 27(), 102266. https://doi.org/10.1016/j.nicl.2020.102266

  73. Botvinik-Nezer, R., Holzmeister, F., Camerer, C., Dreber, A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J., Adcock, R., Avesani, P., Baczkowski, B., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., Benoit, R., Berkers, R., Bhanji, J., Biswal, B., Bobadilla-Suarez, S., Bortolini, T., Bottenhorn, K., Bowring, A., Braem, S., Brooks, H., Brudner, E., Calderon, C., Camilleri, J., Castrellon, J., Cecchetti, L., Cieslik, E., Cole, Z., Collignon, O., Cox, R., Cunningham, W., Czoschke, S., Dadi, K., Davis, C., Luca, A., Delgado, M., Demetriou, L., Dennison, J., Di, X., Dickie, E., Dobryakova, E., Donnat, C., Dukart, J., Duncan, N., Durnez, J., Eed, A., Eickhoff, S., Erhart, A., Fontanesi, L., Fricke, G., Fu, S., Galván, A., Gau, R., Genon, S., Glatard, T., Glerean, E., Goeman, J., Golowin, S., González-García, C., Gorgolewski, K., Grady, C., Green, M., Guassi Moreira, J., Guest, O., Hakimi, S., Hamilton, J., Hancock, R., Handjaras, G., Harry, B., Hawco, C., Herholz, P., Herman, G., Heunis, S., Hoffstaedter, F., Hogeveen, J., Holmes, S., Hu, C., Huettel, S., Hughes, M., Iacovella, V., Iordan, A., Isager, P., Isik, A., Jahn, A., Johnson, M., Johnstone, T., Joseph, M., Juliano, A., Kable, J., Kassinopoulos, M., Koba, C., Kong, X., Koscik, T., Kucukboyaci, N., Kuhl, B., Kupek, S., Laird, A., Lamm, C., Langner, R., Lauharatanahirun, N., Lee, H., Lee, S., Leemans, A., Leo, A., Lesage, E., Li, F., Li, M., Lim, P., Lintz, E., Liphardt, S., Losecaat Vermeer, A., Love, B., Mack, M., Malpica, N., Marins, T., Maumet, C., McDonald, K., McGuire, J., Melero, H., Méndez Leal, A., Meyer, B., Meyer, K., Mihai, G., Mitsis, G., Moll, J., Nielson, D., Nilsonne, G., Notter, M., Olivetti, E., Onicas, A., Papale, P., Patil, K., Peelle, J., Pérez, A., Pischedda, D., Poline, J., Prystauka, Y., Ray, S., Reuter-Lorenz, P., Reynolds, R., Ricciardi, E., Rieck, J., Rodriguez-Thompson, A., Romyn, A., Salo, T., Samanez-Larkin, G., Sanz-Morales, E., Schlichting, M., Schultz, D., Shen, Q., Sheridan, M., Silvers, J., Skagerlund, K., Smith, A., Smith, D., Sokol-Hessner, P., Steinkamp, S., Tashjian, S., Thirion, B., Thorp, J., Tinghög, G., Tisdall, L., Tompson, S., Toro-Serey, C., Torre Tresols, J., Tozzi, L., Truong, V., Turella, L., van ‘t Veer, A., Verguts, T., Vettel, J., Vijayarajah, S., Vo, K., Wall, M., Weeda, W., Weis, S., White, D., Wisniewski, D., Xifra-Porxas, A., Yearling, E., Yoon, S., Yuan, R., Yuen, K., Zhang, L., Zhang, X., Zosky, J., Nichols, T., Poldrack, R., Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582(7810), 84-88. https://doi.org/10.1038/s41586-020-2314-9

  74. Esteban, O., Ciric, R., Finc, K., Blair, R., Markiewicz, C., Moodie, C., Kent, J., Goncalves, M., DuPre, E., Gomez, D., Ye, Z., Salo, T., Valabregue, R., Amlien, I., Liem, F., Jacoby, N., Stojić, H., Cieslak, M., Urchs, S., Halchenko, Y., Ghosh, S., De La Vega, A., Yarkoni, T., Wright, J., Thompson, W., Poldrack, R., Gorgolewski, K. (2020). Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nature Protocols, 15(7), 2186-2202. https://doi.org/10.1038/s41596-020-0327-3

  75. Lin, D., Crabtree, J., Dillo, I., Downs, R., Edmunds, R., Giaretta, D., De Giusti, M., L’Hours, H., Hugo, W., Jenkyns, R., Khodiyar, V., Martone, M., Mokrane, M., Navale, V., Petters, J., Sierman, B., Sokolova, D., Stockhause, M., Westbrook, J. (2020). The TRUST Principles for digital repositories. Scientific Data, 7(1). https://doi.org/10.1038/s41597-020-0486-7

  76. Low, D., Rao, V., Randolph, G., Song, P., Ghosh, S. (2020). Identifying bias in models that detect vocal fold paralysis from audio recordings using explainable machine learning and clinician ratings. Journal unknown. https://doi.org/10.1101/2020.11.23.20235945

  77. Charles, A., Falk, B., Turner, N., Pereira, T., Tward, D., Pedigo, B., Chung, J., Burns, R., Ghosh, S., Kebschull, J., Silversmith, W., Vogelstein, J. (2020). Toward Community-Driven Big Open Brain Science: Open Big Data and Tools for Structure, Function, and Genetics. Annual Review of Neuroscience, 43(1), 441-464. https://doi.org/10.1146/annurev-neuro-100119-110036

  78. Cheng, C., Halchenko, Y. (2020). A new virtue of phantom MRI data: explaining variance in human participant data. F1000Research, 9(), 1131. https://doi.org/10.12688/f1000research.24544.1

  79. Fitzpatrick, P., Mitchell, T., Schmidt, R., Kennedy, D., Frazier, J. (2019). Alpha band signatures of social synchrony. Neuroscience Letters, 699(), 24-30. https://doi.org/10.1016/j.neulet.2019.01.037

  80. Hagler, D., Hatton, S., Cornejo, M., Makowski, C., Fair, D., Dick, A., Sutherland, M., Casey, B., Barch, D., Harms, M., Watts, R., Bjork, J., Garavan, H., Hilmer, L., Pung, C., Sicat, C., Kuperman, J., Bartsch, H., Xue, F., Heitzeg, M., Laird, A., Trinh, T., Gonzalez, R., Tapert, S., Riedel, M., Squeglia, L., Hyde, L., Rosenberg, M., Earl, E., Howlett, K., Baker, F., Soules, M., Diaz, J., de Leon, O., Thompson, W., Neale, M., Herting, M., Sowell, E., Alvarez, R., Hawes, S., Sanchez, M., Bodurka, J., Breslin, F., Morris, A., Paulus, M., Simmons, W., Polimeni, J., van der Kouwe, A., Nencka, A., Gray, K., Pierpaoli, C., Matochik, J., Noronha, A., Aklin, W., Conway, K., Glantz, M., Hoffman, E., Little, R., Lopez, M., Pariyadath, V., Weiss, S., Wolff-Hughes, D., DelCarmen-Wiggins, R., Feldstein Ewing, S., Miranda-Dominguez, O., Nagel, B., Perrone, A., Sturgeon, D., Goldstone, A., Pfefferbaum, A., Pohl, K., Prouty, D., Uban, K., Bookheimer, S., Dapretto, M., Galvan, A., Bagot, K., Giedd, J., Infante, M., Jacobus, J., Patrick, K., Shilling, P., Desikan, R., Li, Y., Sugrue, L., Banich, M., Friedman, N., Hewitt, J., Hopfer, C., Sakai, J., Tanabe, J., Cottler, L., Nixon, S., Chang, L., Cloak, C., Ernst, T., Reeves, G., Kennedy, D., Heeringa, S., Peltier, S., Schulenberg, J., Sripada, C., Zucker, R., Iacono, W., Luciana, M., Calabro, F., Clark, D., Lewis, D., Luna, B., Schirda, C., Brima, T., Foxe, J., Freedman, E., Mruzek, D., Mason, M., Huber, R., McGlade, E., Prescot, A., Renshaw, P., Yurgelun-Todd, D., Allgaier, N., Dumas, J., Ivanova, M., Potter, A., Florsheim, P., Larson, C., Lisdahl, K., Charness, M., Fuemmeler, B., Hettema, J., Maes, H., Steinberg, J., Anokhin, A., Glaser, P., Heath, A., Madden, P., Baskin-Sommers, A., Constable, R., Grant, S., Dowling, G., Brown, S., Jernigan, T., Dale, A. (2019). Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. NeuroImage, 202(), 116091. https://doi.org/10.1016/j.neuroimage.2019.116091

  81. Fenner, M., Crosas, M., Grethe, J., Kennedy, D., Hermjakob, H., Rocca-Serra, P., Durand, G., Berjon, R., Karcher, S., Martone, M., Clark, T. (2019). A data citation roadmap for scholarly data repositories. Scientific Data, 6(1). https://doi.org/10.1038/s41597-019-0031-8

  82. Poline, J. (2019). From data sharing to data publishing. MNI Open Research, 2(), 1. https://doi.org/10.12688/mniopenres.12772.2

  83. Guell, X., Goncalves, M., Kaczmarzyk, J., Gabrieli, J., Schmahmann, J., Ghosh, S. (2019). LittleBrain: A gradient-based tool for the topographical interpretation of cerebellar neuroimaging findings. PLOS ONE, 14(1), e0210028. https://doi.org/10.1371/journal.pone.0210028

  84. Yarkoni, T., Markiewicz, C., de la Vega, A., Gorgolewski, K., Salo, T., Halchenko, Y., McNamara, Q., DeStasio, K., Poline, J., Petrov, D., Hayot-Sasson, V., Nielson, D., Carlin, J., Kiar, G., Whitaker, K., DuPre, E., Wagner, A., Tirrell, L., Jas, M., Hanke, M., Poldrack, R., Esteban, O., Appelhoff, S., Holdgraf, C., Staden, I., Thirion, B., Kleinschmidt, D., Lee, J., di Castello, M., Notter, M., Blair, R. (2019). PyBIDS: Python tools for BIDS datasets. Journal of Open Source Software, 4(40), 1294. https://doi.org/10.21105/joss.01294

  85. Gan-Or, Z., Rao, T., Leveille, E., Degroot, C., Chouinard, S., Cicchetti, F., Dagher, A., Das, S., Desautels, A., Drouin-Ouellet, J., Durcan, T., Gagnon, J., Genge, A., Karamchandani, J., Lafontaine, A., Sun, S., Langlois, M., Levesque, M., Melmed, C., Panisset, M., Parent, M., Poline, J., Postuma, R., Pourcher, E., Rouleau, G., Sharp, M., Monchi, O., Dupré, N., Fon, E. (2019). The Quebec Parkinson Network: A Researcher-Patient Matching Platform and Multimodal Biorepository. Journal of Parkinson’s Disease, 10(1), 301-313. https://doi.org/10.3233/JPD-191775

  86. Kennedy, D., Abraham, S., Bates, J., Crowley, A., Ghosh, S., Gillespie, T., Goncalves, M., Grethe, J., Halchenko, Y., Hanke, M., Haselgrove, C., Hodge, S., Jarecka, D., Kaczmarzyk, J., Keator, D., Meyer, K., Martone, M., Padhy, S., Poline, J., Preuss, N., Sincomb, T., Travers, M. (2019). Everything Matters: The ReproNim Perspective on Reproducible Neuroimaging. Frontiers in Neuroinformatics, 13(). https://doi.org/10.3389/fninf.2019.00001

  87. Keshavan, A., Poline, J. (2019). From the Wet Lab to the Web Lab: A Paradigm Shift in Brain Imaging Research. Frontiers in Neuroinformatics, 13(). https://doi.org/10.3389/fninf.2019.00003

  88. Sitek, K., Gulban, O., Calabrese, E., Johnson, G., Lage-Castellanos, A., Moerel, M., Ghosh, S., De Martino, F. (2019). Mapping the human subcortical auditory system using histology, postmortem MRI and in vivo MRI at 7T. eLife, 8(). https://doi.org/10.7554/eLife.48932

  89. Kennedy, D. (2018). Neuroimaging Neuroinformatics: Sample Size and Other Evolutionary Topics. Neuroinformatics, 16(2), 149-150. https://doi.org/10.1007/s12021-018-9379-8

  90. Wimalaratne, S., Juty, N., Kunze, J., Janée, G., McMurry, J., Beard, N., Jimenez, R., Grethe, J., Hermjakob, H., Martone, M., Clark, T. (2018). Uniform resolution of compact identifiers for biomedical data. Scientific Data, 5(1). https://doi.org/10.1038/sdata.2018.29

  91. Ozyurt, I., Grethe, J. (2018). Foundry: a message-oriented, horizontally scalable ETL system for scientific data integration and enhancement. Database, 2018(). https://doi.org/10.1093/database/bay130

  92. Kim, Y., Poline, J., Dumas, G. (2018). Experimenting with reproducibility: a case study of robustness in bioinformatics. GigaScience, 7(7). https://doi.org/10.1093/gigascience/giy077

  93. Solo, V., Poline, J., Lindquist, M., Simpson, S., Bowman, F., Chung, M., Cassidy, B. (2018). Connectivity in fMRI: Blind Spots and Breakthroughs. IEEE Transactions on Medical Imaging, 37(7), 1537-1550. https://doi.org/10.1109/TMI.2018.2831261

  94. Millman, K., Brett, M., Barnowski, R., Poline, J. (2018). Teaching Computational Reproducibility for Neuroimaging. Frontiers in Neuroscience, 12(). https://doi.org/10.3389/fnins.2018.00727

  95. Guell, X., Schmahmann, J., Gabrieli, J., Ghosh, S. (2018). Functional gradients of the cerebellum. eLife, 7(). https://doi.org/10.7554/eLife.36652

  96. Kennedy, D. (2017). The Information Sharing Statement Grows Some Teeth. Neuroinformatics, 15(2), 113-114. https://doi.org/10.1007/s12021-017-9331-3

  97. Irimia, A., Wei, S., Lu, N., Moore, C., Kennedy, D. (2017). Mobile Monitoring of Traumatic Brain Injury in Older Adults: Challenges and Opportunities. Neuroinformatics, 15(3), 227-230. https://doi.org/10.1007/s12021-017-9335-z

  98. Nichols, T., Das, S., Eickhoff, S., Evans, A., Glatard, T., Hanke, M., Kriegeskorte, N., Milham, M., Poldrack, R., Poline, J., Proal, E., Thirion, B., Van Essen, D., White, T., Yeo, B. (2017). Best practices in data analysis and sharing in neuroimaging using MRI. Nature Neuroscience, 20(3), 299-303. https://doi.org/10.1038/nn.4500

  99. Eglen, S., Marwick, B., Halchenko, Y., Hanke, M., Sufi, S., Gleeson, P., Silver, R., Davison, A., Lanyon, L., Abrams, M., Wachtler, T., Willshaw, D., Pouzat, C., Poline, J. (2017). Toward standard practices for sharing computer code and programs in neuroscience. Nature Neuroscience, 20(6), 770-773. https://doi.org/10.1038/nn.4550

  100. Poldrack, R., Baker, C., Durnez, J., Gorgolewski, K., Matthews, P., Munafò, M., Nichols, T., Poline, J., Vul, E., Yarkoni, T. (2017). Scanning the horizon: towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115-126. https://doi.org/10.1038/nrn.2016.167

  101. Sansone, S., Gonzalez-Beltran, A., Rocca-Serra, P., Alter, G., Grethe, J., Xu, H., Fore, I., Lyle, J., Gururaj, A., Chen, X., Kim, H., Zong, N., Li, Y., Liu, R., Ozyurt, I., Ohno-Machado, L. (2017). DATS, the data tag suite to enable discoverability of datasets. Scientific Data, 4(1). https://doi.org/10.1038/sdata.2017.59

  102. Huntenburg, J., Bazin, P., Goulas, A., Tardif, C., Villringer, A., Margulies, D. (2017). A Systematic Relationship Between Functional Connectivity and Intracortical Myelin in the Human Cerebral Cortex. Cerebral Cortex, 27(2), 981-997. https://doi.org/10.1093/cercor/bhx030

  103. Ghosh, S., Poline, J., Keator, D., Halchenko, Y., Thomas, A., Kessler, D., Kennedy, D. (2017). A very simple, re-executable neuroimaging publication. F1000Research, 6(), 124. https://doi.org/10.12688/f1000research.10783.2

  104. Gorgolewski, K., Alfaro-Almagro, F., Auer, T., Bellec, P., Capotă, M., Chakravarty, M., Churchill, N., Cohen, A., Craddock, R., Devenyi, G., Eklund, A., Esteban, O., Flandin, G., Ghosh, S., Guntupalli, J., Jenkinson, M., Keshavan, A., Kiar, G., Liem, F., Raamana, P., Raffelt, D., Steele, C., Quirion, P., Smith, R., Strother, S., Varoquaux, G., Wang, Y., Yarkoni, T., Poldrack, R. (2017). BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods. PLOS Computational Biology, 13(3), e1005209. https://doi.org/10.1371/journal.pcbi.1005209

  105. Klein, A., Ghosh, S., Bao, F., Giard, J., Häme, Y., Stavsky, E., Lee, N., Rossa, B., Reuter, M., Chaibub Neto, E., Keshavan, A. (2017). Mindboggling morphometry of human brains. PLOS Computational Biology, 13(2), e1005350. https://doi.org/10.1371/journal.pcbi.1005350

  106. Bandrowski, A., Martone, M. (2016). RRIDs: A Simple Step toward Improving Reproducibility through Rigor and Transparency of Experimental Methods. Neuron, 90(3), 434-436. https://doi.org/10.1016/j.neuron.2016.04.030

  107. Maumet, C., Auer, T., Bowring, A., Chen, G., Das, S., Flandin, G., Ghosh, S., Glatard, T., Gorgolewski, K., Helmer, K., Jenkinson, M., Keator, D., Nichols, B., Poline, J., Reynolds, R., Sochat, V., Turner, J., Nichols, T. (2016). Sharing brain mapping statistical results with the neuroimaging data model. Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.102

  108. Gorgolewski, K., Auer, T., Calhoun, V., Craddock, R., Das, S., Duff, E., Flandin, G., Ghosh, S., Glatard, T., Halchenko, Y., Handwerker, D., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C., Nichols, B., Nichols, T., Pellman, J., Poline, J., Rokem, A., Schaefer, G., Sochat, V., Triplett, W., Turner, J., Varoquaux, G., Poldrack, R. (2016). The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments. Scientific Data, 3(1). https://doi.org/10.1038/sdata.2016.44

  109. Margulies, D., Ghosh, S., Goulas, A., Falkiewicz, M., Huntenburg, J., Langs, G., Bezgin, G., Eickhoff, S., Castellanos, F., Petrides, M., Jefferies, E., Smallwood, J. (2016). Situating the default-mode network along a principal gradient of macroscale cortical organization. Proceedings of the National Academy of Sciences, 113(44), 12574-12579. https://doi.org/10.1073/pnas.1608282113

  110. James, E., Leveille, S., Hausdorff, J., Travison, T., Kennedy, D., Tucker, K., Al Snih, S., Markides, K., Bean, J. (2016). Rhythmic Interlimb Coordination Impairments and the Risk for Developing Mobility Limitations. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, glw236. https://doi.org/10.1093/gerona/glw236

  111. Honor, L., Haselgrove, C., Frazier, J., Kennedy, D. (2016). Data Citation in Neuroimaging: Proposed Best Practices for Data Identification and Attribution. Frontiers in Neuroinformatics, 10(). https://doi.org/10.3389/fninf.2016.00034